

God as "Master Architect" Bible moralisée, 13th cent.

Intelligent Design

"Mysterium Cosmographicum" Johannes Kepler, Graz, 1596

Life on Earth is not only brief, but dismaying tenous.

We were attached (luckily) to a favoured evolutionary line

HOW TO BUILD A UNIVERSE

THE FAMILIAR CANONICAL PICTURE

- The abundance distribution was interpreted, starting from Burbidge, Burbidge, Fowler and Hoyle(1957), as the outcome of a few basic processes of nucleosynthesis.
- H burning (the most effective, with an average of 7MeV per nucleon of generated energy): produced ⁴He, ³He, and gives (generally secondary) contributions to intermediate nuclei up to Si.
- He burning (the second-most effective): produces ¹²C, ¹⁶O, some ²⁰Ne, plus secondary chains starting from ¹⁴N or ¹³C and leading to neutron generation.
- Fusion of intermediate nuclei -¹²C, ¹⁶O, (²⁰Ne), (²⁸Si)→nuclei below and up to the Fe-peak.
- Nuclear statistical equilibrium processes leading to ⁵⁶Fe ⁵⁶Ni and beyond, before and after the explosion.
- Explosive nucleosynthesis in SN shells, reorganizing abundances up to ^{63,65}Cu
- Explosive nucleosynthesis in themonuclear SN Ia (→Fe).
- Neutron captures (slow and rapid processes).
- Rare p-processes (γ-induced?)

Stable beam program for the Nuclear Astrophysics

Key problems:

Scientific program
Links between different branches of Physics
Nuclear reactions to be measured

Synthesis of Heavy Elements

At high tempreatures a larger number of nuclear reactions are activated

C-burning $T \sim 10^9 \text{ K}$

Ne-burning $T \sim 1.3 \cdot 10^9 \text{ K}$

Background component: cosmic rays

Fig. 1. Reaction scheme of cosmic rays with the atmosphere of the earth.

Digging for Science

FIGURE 4.6. The dominant energy-dependent functions are shown for nuclear reactions between charged particles. While both the energy distribution function (Maxwell-Boltzmann) and the quantum mechanical tunneling function through the Coulomb barrier are small for the overlap region, the convolution of the two functions results in a peak (the Gamow peak) near the energy E_0 , giving a sufficiently high probability to allow a significant number of reactions to occur. The energy of the Gamow peak is generally much larger than kT.

Why going underground?

Searching for rare events physics→
 background level achieved →
 develop strategies for background
 rejection+ state-of-the-art ultra-low
 background technique

deep underground site to avoid cosmic radiation + technology to deal with low sources of background

Underground background suppression (LUNA)

Fig. 2. Laboratory γ background as seen with the germanium detector of setup A at the earth's surface (1000 m above sea level) and inside the Gran Sasso underground facility.

Background reduction effects LUNA HISTORY

On the shoulders of giants

Underground research is emerging as a unique and irreplaceable component of science

There can be little doubt that increased effort in this area will yield tremendous scientific dividends, including totally unexpected results.

Frontier Science: we need the depth (and ≥20 yrs access)

Europe Underground Labs under ILIAS

HH-NIPNE TANDEM accelerator: 8.5 MV (Bucharest)

Slanic Prahova Background spectra collected with a CANBERRA GeHP detector with 22.2% rel. efficiency

Slanic Prahova Background spectra collected with an ORTEC GeHP detector with 33% rel. efficiency

Gamma ray peaks in the background spectrum, collecting time=267500 s, ORTEC detector, 33% rel. eff., underground unshielded

Slanic Prahova

Isotope	Energy (I	cps	Isotope	Energy (k	cps
Pb-210	46,52	0,0025	Pa-228	911,23	0,0024
Pb-212	77,11	0,0201	Bi-214	934,05	0,0009
U-228	92,29	0,0132	Ac-228	968,90	0,0020
Ra-226	185,99	0,0072	Bi-214	1120,28	0,0041
Ac-228	209,40	0,0004	Bi-214	1155,19	0,0004
Pb-212	238,63	0,0273	Bi-214	1238,11	0,0016
TI-208	277,36	0,0024	Bi-214	1280,96	0,0004
Pb-214	295,22	0,0134	Bi-214	1377,65	0,0011
Ac-228	328,00	0,0004	Bi-214	1407,98	0,0011
Pa-228	338,32	0,0011	K-40	1460,75	0,0158
Pb-214	351,99	0,0207	Bi-214	1509,19	0,0005
Pa-228	463,00	0,0008	Bi-212	1620,56	0,0003
TI-208	510,72	0,0028	Bi-214	1661,28	0,0003
TI-208	583,14	0,0064	Bi-214	1729,60	0,0007
Bi-214	609,32	0,0194	Bi-214	1764,51	0,0037
Bi-214	665,45	0,0014	Bi-214	1847,44	0,0005
Bi-212	727,17	0,0011	TI-208	2103,47	0,0004
Bi-214	768,36	0,0017	Bi-214	2118,54	0,0003
Pb-214	785,95	0,0008	Bi-214	2204,12	0,0009
Bi-214	806,17	0,0004	Bi-214	2447,71	0,0004

Praid values

- Temperature: ~17 °C
- High air purity
- Relative high air humidity: 71%
- condensed vapours: NaCl, Ca²⁺, Mg, K, Na, I, Br,...
- High CO₂ concentration: 0.1-0.3%
- Negative air ionization: ²²²Rn(1.5-1.9x10⁻¹³ Ci/I)
- pH low: 6.5-6.9 (acid character)
- Oxygen partial pressure is bigger by 2.07%

Requirements for searched location to install the accelerator:

- Deepest possible
- Lowest possible background
- Access with truck (transport accelerator tank)
- Surface: min. 1000 m² max. "not huge" (to handle SF₆ gas in case of accidental release)
- Height: min. 5 m max. –
- Not in use for other purposes

To keep in mind: is rather cheap to make new tunnels and cavities in saltmine but could take time

One specific problem: the "convergence" of salt walls with up to 1 cm/year!

=> Adjustable supports for experimental hall and periodical realignment

Project costs

1. Underground building and utilities 2.0 MEuro

2. Surface building for offices and worshops 0.3 MEuro

3. Accelerator and its installation/commissioning 5.0 MEuro

4. Infrastructure for experiments 1.6 Meuro

TOTAL: 8.9 MEuro

Project duration: 4 years

start: 2008 hopefully

- Temperature: ~17 °C
- High air purity
- Relative high air humidity: 71%
- condensed vapours: NaCl, Ca²⁺, Mg, K, Na, I, Br,...
- High CO₂ concentration: 0.1-0.3%
- Negative air ionization: ²²²Rn(1.5-1.9x10⁻¹³ Ci/l)
- pH low: 6.5-6.9 (acid character)
- Oxygen partial pressure is bigger by 2.07%

Gamma spectroscopy results January 2007 33% eff

zone	30-3000 keV		time	2620-3000 keV	
	rate(cts/sec)	err(cts/sec)	(sec)	rate(cts/sec)	err(cts/sec)
Praid mine, orizont 60, detector in the center of the hall	10.9916	0.0663	2501	0.0188	0.0027
Praid mine, orizont 60, partial salt bricks shield	4.9316	0.0248	8000	0.0053	0.0008
Praid mine, orizont 60, detector close to the right wall	6.4643	0.0302	7109	0.0058	0.0009
Praid mine, orizont 60, detector close to left wall	8.1064	0.0403	5000	0.0016	0.0006
Praid mine, orizont 60, detector close to back left wall	13.5743	0.0583	4000	0.0030	0.0009
Praid mine, Telegdy, detector in the right center hall	23.9753	0.1264	1500	0.0133	0.0030
Praid mine, Doja mine, corridor near elevator	12.3000		240180	0.0006	0.0001
ground level (Sovata-Praid)	113.2504	0.1065	9989	0.0449	0.0021

Consistent results from TL dosimetry

Detectors type: GR200A

Exposure time: 107 days (102 inside mine)

Telegdy Hall: 3.86 +/- 0.23 nSv/h

"Orizont 60" Hall: 2.76 +/- 0.17 nSv/h

Ground level: 55.1 +/- 0.7 nSv/h

IFIN-HH Bucharest: 73.3 nSv/h

April 2007 Ge detector 25% eff

Spectrum	Conditions	Time(sec)	2650-4650keV(cts/s)	609keV(ct s/s)	1460keV(cts/s)	2614keV(cts/s)
praid_b1	1	240180	2.25E-03	2.31E-01	1.51E-01	1.90E-02
praid_b2	I&Pb	166835	2.05E-03	2.18E-01	8.81E-03	1.94E-03
sova_b2	O&Pb	41179	4.64E-02	1.02E-02	1.03E-01	2.63E-02
sova_1	0	43044	5.86E-02	4.40E-02	1.38E+00	2.29E-01

HP Ge - Detector

LNGS underground = 0.0002cts/s in 3MeV.. 8MeV

Ge detector (Romania)
Praid Underground = 0.00353±0.00015 cts/h/keV

Facilities to be developed

- Ion sources
- Recoil separators
- Targets
- Detectors
- Data Acquisition systems

Background inside and outside the salt mine without Pb bricks (April 2007)

Praid background inside and outside the saltmine with Pb bricks (April 2007)

Layered shielding (reduce γ , β , neutrons)

Cu walls (cleanest material)

Thin "mu-metal" magnetic shield

Inner polyethylene (further neutron moderation)

Outside Pb & inner "ancient" Pb (low in ²¹⁰Pb)

Outer polyethylene (main neutron moderator)

All materials near detectors screened for U/Th/K

Active Veto (reject events associated with cosmics) Thick plastic scintillator veto wrapped around shield Reject residual cosmic-ray induced events

Values

Ogoya (Japan) 135m depth: muon flux 5*10⁻⁵/cm²/sec

Oto Cosmo (Japan) over 400m depth: Rn level 10 Bq/m³

Praid (Romania): Rn level 6 Bq/m³

Ogoya (Japan): neutron flux 2-4*10-5

Praid (Romania): U <10ppb or 133*10⁻³Bq/cm³ or Bq/g

Boulby (UK): U ~10-400ppb

What are high purity materials?

Purity level Common usage

99.9% High Pure (3 nines purity)

99.95% Analytical Grade

99.99% Spectroscopically Pure

99.9999% High Pure (6 nines purity)

Conclusions

There is a clear need for a new (or more such) underground accelerator based laboratory for nuclear astrophysics research in Europe.

Built in a saltmine, at 200-300 m depth, it will be best suited to host a gamma array of Ge detectors for reaction cross section measurements down to relevant energies for astrophysical processes.

IFIN-HH has the technical and scientific expertize to build such a laboratory, and it could be an intermediary step for a larger and deeper underground laboratory.

Its creation in Romania and its success depends on INTERNATIONAL users.

Differencies

- Depth
- Environment
- Infrastructue
- Human infrastructure
- Tools (accelerators, detectors, shielding)

What stage we are now?

- Conceptual one
- Activities we did already: measurements, administrative stuff, financial funds

Next steps

- Project submission
- Companies to contact designs to be done and accepted
- Digging
- Monitoring salt, water, seismic movements
- Construction inside and outside
- Buying the accelerator and the other stuff around
- Young people to start working on science projects

Collaborations

- Geology
- Seismology
- Rare metals
- Health/medicine

Problems we face

- Tourism people
- Environment people
- Passing salt mines from state property to private property
- Recently member of the UE (new problems)
- Salt movements
- Water infiltrations
- Soil intrusions